Funded by

Bundesministerium für Bildung und Forschung

Numerical flow and transport modeling using the INOWAS platform

Tutorial 2: Transient groundwater flow model and scenario analysis

Introduction

This tutorial gives an overview of the "Numerical groundwater modelling and optimization" tool of the INOWAS platform and guides users to create a simple **transient groundwater flow model**. Furthermore, a **scenario analysis** presenting tool "MODFLOW model scenario manager" will be conducted. More information about the tools can be found on the respective documentation pages:

https://inowas.com/tools/t03-modflow-model-setup-and-editor/ https://inowas.com/tools/t07-application-specific-scenarios-analyzer/

A prerequisite to start Tutorial 2 is that you have finished Tutorial 1 on the INOWAS platform. The tutorial takes about 45 min to complete.

Background

This spatial discretization is the same as for Tutorial 1. However, the model has 3 stress periods (one steady state and two transient periods). The aquifer is unconfined in this case. As boundaries two GHBs (General Head Boundaries) are defined on each side. In the center of the study area, there is a pumping well which only pumps water in the third stress period:

Period 1 (1 day):

- steady state with left and right GHB stage = 60 m
 Period 2 (100 days):
- left GHB with stage = 60 m, right GHB with stage set to 50 m.
 Period 3 (100 days):
- pumping well at model centre with rate = -100 m³/d
- left GHB with stage = 60 m, right GHB with stage set to 50 m.

Create new model /clone tutorial 1

As the model in Tutorial 2 has the same discretization as the model in Tutorial 1, the model can be cloned. For cloning, go to the dashboard, click on tool "T03: Numerical groundwater modeling and optimization" and search for your model from Tutorial 1. If you cannot find it, you can also clone "Tutorial 1" which was created by inowas.

TOOLS	ŧ		Instances of T03: Nu	imerical ground	water modelling and o	optimization
T02: Groundwater mounding (Hantush)			reste new 🕇 Im	inort		Private or Publ
T03: Numerical groundwater modelling and optimization				pore		
T04: Database for GIS-based suitability mapping		No.	Name	Тооі	Date created	Created b
T05: GIS multi-criteria decision analysis		1	Tutorial 1 Model Area	Т03	04/10/2019 11:34	jana.glass
T06: MAR method selection		2	Tutorial 1	T03	04/10/2019 11:47	jana.glass 🖉
T07: MODFLOW model scenario manager						
T08: 1D transport model (Ogata-Banks)						
T09: Simple saltwater intrusion equations						
T11: MAR model selection						
T13: Travel time through unconfined aquifer						
T14: Pumping-induced river drawdown						
T17: Global MAR portal						
T18: SAT basin design						

4

Update name and description

You should now have two models with the same name in your **private dashboard**. Click on the model title to start editing. As a first step, update the general information of the new model. It is also possible to switch between private and public.

Time discretization

The spatial discretization is kept the same as in Tutorial 1. The time discretization needs to be changed: create two new stress periods with starting date 02.01.2015 and 10.04.2015, respectively. The end date should be set to 20.07.2015, the total simulation time is 201 days.

Tools > T03. Numerical groundwater modelling and optimization -> Tutorial 2 🖋

MODEL SETUP	Ē		Don't forget	o save the ch	anges	I	Ð	Save
Soil Layers Boundaries	□ ♥	Spatial Discretization	Start Date	Start Date	nstp	tsmult	steady	
CALCULATION		Time Discretization	01.01.2015	01.01.2015	1	1		
Flow	tą.			02.01.2015	1	1		Ŧ
Transport	⇒		20.07.2015					-
Calculation	6		Time unit	10.04.2015	1	1		· /
Results	<u></u>		days 👻	O 1 Day O 1 Month O	1 Year			
CALIBRATION			Total times 004 days		3	etroe	e noric	de
Observations	Ċ		lotal time: 201 days		J .	51105	s here	JUS.
Calibration					1.	Stea	ady sta	ate (1 d
			Click on on	e of the buttons	2.	Trai	nsient	(100 da
I			to add new	3.	Iral	nsient	(100 da)	

Update soil properties

The layer type needs to be changed to convertible. The following soil parameters also need to be changed:

- Top of model layer:
- Horizontal hydraulic conductivity
- Vertical hydraulic conductivity
- Specific storage
- Specific yield

top: 60	Denithformation
Hk: 1	Don t forget to
Vka: 1	save the onanges.
Ss: 0.0001	
Sy: 0.1	

	-	+ Add Layer		B Save
Soil Layers		0: Top layer	Properties top botm hk hani vka ss	sy
Doundaries	~		Layer name	Layer type
CALCULATION			Top layer	convertible 👻
Flow	17		Laver description	Laver average calculation
Transport	⇒			Layer areitage calculation
Calculation	Ø		-	harmonic mean 🔹
Results	<u>.n</u>			Rewetting capability
CALIBRATION				No 👻
Observations	Ċ			
Calibration				
COMPLITATION				
COMPONNION				
Optimization				

Update boundaries

Delete the two constant head (CHD) boundaries and create two general head (GHB) boundaries at the eastern and western boundary of the model domain.

GHB east: Conductance: 6066 m/d Head Stress Period 1: 60 m Head Stress Period 2: 50 m Head Stress Period 3: 50 m

Update boundaries (2)

Time dependent boundary values at observation point

Start Date	Head (m)	Conductance (m/day)
01.01.2015	60	6066
02.01.2015	60	6066
10.04.2015	60	6066

GHB west:

Conductance: 6066 m/d Head Stress Period 1: 60 m Head Stress Period 2: 60 m Head Stress Period 3: 60 m

Add pumping well

Add a pumping well boundary (WEL) in the central part of the model domain.

Pumping rate: Stress Period 1: 0 m³/d Stress Period 2: 0 m³/d Stress Period 3: -100 m³/d

Run the model

In the calculation section, run the model and view the results. First have a look, if the simulation terminated normally. Then, you can have a look at the head results for the three stress periods.

Normal termination of simulation?

Results

Stress period 1:

the head are constant throughout the model area.

Results

Stress period 2:

Water is flowing from left to right due to the GHB gradient.

Change

stress period,

time steps

Results

Stress period 3:

The pumping from the well causes a small depression cone.

In the scenario analysis, we want to examine what happens if the pumping rate is further increased.

For that create a scenario analysis in the results section.

The present model will be taken as the base model.

Be aware, that you are now in Tool "T07. MODFLOW model scenario manager".

Change the name, description and public/private status.

Clone the base model to create a scenario.

There should be now two models in the slider: Tutorial 2 (basemodel) and Tutorial 2 (basemodel) clone.

Be aware that you are now back in the Model Editor (Tool T03). Rename the Scenario to e.g. Tutorial 2 Scenario 1 and change the pumping rate to -1000 m³/d.

Run the model and make sure the simulation terminated normally. Then return to the scenario analysis.

MODEL SETUP			Calculation	
Discretization			Calculation	
ioil Layers Boundaries	0	Overview	Calculation finished	
	· ·	Calculation Logs	Progress	PCO/LON-2885
ALCULATION		Modflow Files		U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOM MODEL Version 1.12.00 2/3/2017
low	ta.	Wouldwin 1103		
ransport	≓		Finished successfully!	Uning NUME file: mf.nam Ram start date and time (yyyy/nm/dd bh:nm:ss): 2019/04/11 12:07:23
Calculation	6			
Results	<u>111</u>			Solving: Stress period: 1 Time step: 1 Ground-Nather Flow Eqn. Solving: Stress period: 2 Time step: 1 Ground-Nather Flow Eqn.
CALIBRATION				Solving: Stress period: 3 Time step: 1 Ground-Matter Flow Eqn. Doe and data and time (secondm/dd bhrawnis): 2010/06/13 13:07:23
Observations	Ô			Elapsed run time: 0.003 Seconds
Calibration				Normal termination of simulation
COMPUTATION				
)ptimization	=			

In the scenario manager, the head of the Base model and scenario 1 can be compared.

Both scenarios have to be switched on (blue) for comparison. A scenario is currently not displayed if the button is white.

Select the row/column where the pumping well is located to visualize its influence

Tools > T07. MODFLOW model see RESULTS Cross Section Difference Time Series Q	enario manager → Scenario analysis Tutorial 2 Select type Head • Top layer •	Select total time [days] 99 200	
Tutorial 2 (basemodel) ! Tutorial 2 Scenario 1 ! O for O red	Tutorial 2 (basemodel)	Tutorial 2 Scenario 1)
	Horizontal cross section	Vertical cross section	

Additional Task

The water authority decided that the groundwater head is not allowed to drop below 50 m in the whole model area due to land subsidence issues.

How much water can be pumped from the pumping well so that the water level stays above 50 m?

Create an additional scenario and try to find out.

Contact

Thank you for going through Tutorial 2. If you have any comments or questions, please contact us (also if you want to find out if your answer of the additional task is correct) !

Further Tutorials about the INOWAS platform:

Tutorial 1- Set up of steady state groundwater flow model

Tutorial 3- Set up of solute transport model

