Funded by

Bundesministerium für Bildung und Forschung

Multi-criteria decision analysis for suitability mapping with the INOWAS platform

Tutorial 4: MAR suitability analysis with three criteria

The INOWAS platform is a free web-based platform to provide a collection of simple, practical and reliable tools to solve groundwater related issues.

This tutorial uses the Tool 5 - "GIS Multi criteria decision analysis" to create suitability maps for MAR location analysis.

The benefits of creating suitability maps on the platform:

- ✓ 1. User-friendly (easy to access, free)
- ✓ 2. Shareable maps (shared via platform or download)
- ✓ 3. Intuitive results visualization

Introduction

This tutorial provides an overview of the "GIS Multi criteria decision analysis" tool on the INOWAS platform and guides users to create a simple **suitability map** with three criteria through the platform.

More information about the tool can be found on the respective documentation page:

https://inowas.com/tools/t05-gis-mcda/

The tutorial takes about 30 min for completion.

Before you start, please register your user account here: <u>https://inowas.com/</u>

Example background

The tutorial uses multi-criteria decision analysis (MCDA) to create a suitability map from three criteria (=GIS maps). The following maps will be used and are provided through a download <u>here</u>:

- 1. Slope
- 2. Geology
- 3. Land cover

All maps are provided as simplified 10x10 raster files (tiff-file). The user is guided through MCDA steps, namely:

- Criteria definition
- Weight assignment
- Criteria standardization and reclassification
- Constraint mapping
- Decision Rules

Create a new model on the platform

Step 1. Log in to the web-based INOWAS platform Step 2. Navigate to the dashboard and select "T05. GIS multi-criteria decision analysis"

Step 3. Create a new model by clicking on the "Create new" button

🗱 DASHBOARD 📑 DOCUMENTATION 🛢 DATASETS				Jana Sallwey 👻
TOOLS =	Instances of T05: GIS multi-criteria decision analysis			
T02: Groundwater mounding (Hantush)	+ Create new			Q Private OF Public
T03: Numerical groundwater modelling and optimization	+ Create New			Q Private or Public
T04: Database for GIS-based suitability mapping	No. lame	Tool	Date created	Created by
T05: GIS multi-criteria decision analysis	1 Horn of Africa	T05	03/22/2019 11:53	jana.sallwey
T06: MAR method selection				
T07: MODFLOW model scenario manager	Create a new model			
T08: 1D mt3d model (Ogata-Banks)				
T09: Simple saltwater intrusion equations				
T11: MAR model selection				
T13: Travel time through unconfined aquifer				
T14: Pumping-induced river drawdown				
T17: Global MAR portal				
T18: SAT basin design				

6 Tutorial 4, Version 1 25.04.2019

Assign weights to criteria

1. Click weight assignment to proceed to next step

Four different weight assignment methods are available, the user can choose one or various methods for comparison. For this tutorial we will test all methods.

2. Start Free input by clicking it.

Weight assignment – Free input

8

Assign weights to criteria

Choose ranking method by clicking it.

Assign weights to criteria

Choose multi-influence method by clicking it.

Weight assignment – Multi influence

Steps for multi influence method:

- 1. Click: Start editing
- 2. Click on a criterion and then draw a connection to another criterion or the project itself to indicate that they influence each other (arrow appears)
- Click on an arrow and then the major/minor button to change importance of link for geology/land cover link. Minor links are indicated by dashed lines.
- 4. Save changes

Assign weights to criteria

Choose pairwise comparison by clicking it.

Weight assignment – Pairwise comparison

Criteria upload

1. Click on criteria data to start uploading data

Criteria upload

1. Click to start data upload

Criteria upload

Upload Rasterfile

1. Choose file for data upload (slope.tiff)	Important The rasterfile should have the same bounds as the model area. The grid size will be interpolated automatically, if an interpolation method is selected. Interpolation method Nearest-neighbor (default)	Metadata # 7166dff2-e2a8-41ac-84b7-bc2a66d38cf8_tif @ GTiff ♥ X: 19.011, Y: -33.151 ➡ 0.00970000000000013 1 -0.00979999999999997 Ø GEOGCS"WGS 84",DATUM["WGS_1984",SPHEROID]"WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG", ## X: 10, Y: 10, Z: 1	
	Data Band D		
		■3.1e-1 - ■1.644499999999997e+1 - ■3.258e+1 -	2. Upload

Criteria reclassification slope

Criteria reclassification slope

1. Chose name and display color

2. Choose minimum and maximum values of class

Values used for three classes:

	Name	From	То	Class
•	High slope	>= 30	<= 50	0
•	Medium slope	> 5	< 30	1.2-0.04*x
•	Low slope	>= 0	<= 5	1

For medium slope use Rule type "calculation formula" instead of "fixed suitability index" and type in 1.2-0.04*x which represents a linear connection between the highest and lowest suitability index

Criteria reclassification geology

Upload geology data (geology.tiff) and reclassify according to data below. Don't forget to save!

Criteria reclassification land cover

Upload land cover data (landcover.tiff) and reclassify according to data below. Don't forget to save!

Tutorial 4, 22 Version 1 25.04.2019

Criteria reclassification results

Suitability calculation

1. Click to start suitability calculation

Suitability results

Criteria	a
Weight Assignment	0
Criteria Data	0
Global Constraints	0
Suitability	0

Contact

Thank you for going through this tutorial. If you have any comments or questions, please contact us!

Further Tutorials about the INOWAS platform:

Tutorial 1 - Setup of steady-state groundwater flow model

Tutorial 2 - transient groundwater flow modeling and scenario analysis

Tutorial 3 - set up of solute transport model

